13,711 research outputs found

    Bodies of constant stress experiencing forces of orbital flight

    Get PDF
    Bodies of constant stress experiencing orbital flight centrifugal and gravitational force

    Helicopter rotor loads using discretized matched asymptotic expansions

    Get PDF
    The numerical practicality of a matched asymptotic expansion approach for the computation of unsteady three dimensional airloads on a helicopter rotor was improved. This effort utilizes a discretized repesentation of the doublet strength distribution and helical streamlines to decrease the computational requirements of the original analysis. The continuous variation of the doublet strength was approximated by piecewise constant or piecewise quadratic distributions, and the helical trajectory of a fluid particle was approximated by connected straight line segments. As a direct result of these simplified representations the computational time required for the execution of a typical flight condition was reduced by an order of magnitude with respect to the requirements of the original analysis. Airloads which were computed using the discretized method for a two bladed model rotor and a full scale four bladed rotor are in close agreement with measured results and airloads from the original asymptotic analysis. For conditions characterized by significant rotor/wake interaction the piecewise constant representation requires a reduced azimuth spacing to maintain acceptable accuracy

    Helicopter rotor loads using matched asymptotic expansions: User's manual

    Get PDF
    Computer programs were developed to implement the computational scheme arising from Van Holten's asymptotic method for calculating airloads on a helicopter rotor blade in forward flight, and a similar technique which is based on a discretized version of the method. The basic outlines of the two programs are presented, followed by separate descriptions of the input requirements and output format. Two examples illustrating job entry with appropriate input data and corresponding output are included. Appendices contain a sample table of lift coefficient data for the NACA 0012 air foil and listings of the two programs

    Instrumented transducer for study of the bat echolocation process

    Get PDF
    Evolution has enabled the bat to echolocate with ease and efficiency, to the extent that the bats capabilities far exceed the most technologically advanced manmade systems. Such capabilities reinforce mans intrigue in the animal kingdom. In studying bats we aspire to quantify and understand their inherent skills in the hope of transferring them to engineering systems. In trying to further our understanding of the animal kingdom it is often the case that we try to replicate or mimic what the animal is doing. In terms of echolocation it is thought that a bat emits a signal and retains memory of an exact copy to be used in conjunction with the returning echo to reveal information about the target. To emulate the vocalisation and auditory system of a bat it is necessary to both accurately generate and detect sound waves

    Exploratory investigation of sound pressure level in the wake of an oscillating airfoil in the vicinity of stall

    Get PDF
    Wind tunnel tests were performed on two oscillating two-dimensional lifting surfaces. The first of these models had an NACA 0012 airfoil section while the second simulated the classical flat plate. Both of these models had a mean angle of attack of 12 degrees while being oscillated in pitch about their midchord with a double amplitude of 6 degrees. Wake surveys of sound pressure level were made over a frequency range from 16 to 32 Hz and at various free stream velocities up to 100 ft/sec. The sound pressure level spectrum indicated significant peaks in sound intensity at the oscillation frequency and its first harmonic near the wake of both models. From a comparison of these data with that of a sound level meter, it is concluded that most of the sound intensity is contained within these peaks and no appreciable peaks occur at higher harmonics. It is concluded that within the wake the sound intensity is largely pseudosound while at one chord length outside the wake, it is largely true vortex sound. For both the airfoil and flat plate the peaks appear to be more strongly dependent upon the airspeed than on the oscillation frequency. Therefore reduced frequency does not appear to be a significant parameter in the generation of wake sound intensity

    High-temperature LDV seed particle development

    Get PDF
    The feasibility of developing a method for making monodisperse, unagglomerated spherical particles greater than 50 nm in diameter was demonstrated. Carbonaceous particles were made by pyrolyzing ethylene with a pulsed CO2 laser, thereby creating a non-equilibrium mixture of carbon, hydrogen, hydrocarbon vapors, and unpyrolyzed ethylene. Via a complex series of reactions, the carbon and hydrocarbon vapors quickly condensed into the spherical particles. By cooling and dispersing them in a supersonic expansion immediately after their creation, the hot newly-formed spheres were prevented from colliding and coalescing, thus preventing the problem of agglomeration which as plagued other investigators studying laser-simulated particle formation. The cold particles could be left suspended in the residual gases indefinitely without agglomerating. Their uniform sizes and unagglomerated nature were visualized by collecting the particles on filters that were subsequently examined using electron microscopy. It was found the mean particle size can be coarsely controlled by varying the initial ethylene pressure, and can be finely controlled by varying the fluence (energy/unit area) with which the laser irradiates the gas. The motivating application for this research was to manufacture particles that could be used as laser Doppler velocimetry (LDV) seeds in high-temperature high-speed flows. Though the particles made in this program will not evaporate until heated to about 3000 K, and thus could serve as LDV seeds in some applications, they are not ideal when the hot atmosphere is also oxidizing. In that situation, ceramic materials would be preferable. Research performed elsewhere has demonstrated that selected ceramic materials can be manufactured by laser pyrolysis of appropriate supply gases. It is anticipated that, when the same gases are used in conjunction with the rapid cooling technique, unagglomerated spherical ceramic particles can be made with little difficulty. Such particles would also be valuable to manufacturers of ceramic or abrasive products, and this technique may find its greatest commercial potential in those areas

    Helicopter vibration suppression using simple pendulum absorbers on the rotor blade

    Get PDF
    A comprehensive anaytical design procedure for the installation of simple pendulums on the blades of a helicopter rotor to suppress the root reactions is presented. A frequency response anaysis is conducted of typical rotor blades excited by a harmonic variation of spanwise airload distributions as well as a concentrated load at the tip. The results presented included the effect of pendulum tuning on the minimization of the hub reactions. It is found that a properly designed flapping pendulum attenuates the root out-of-plane force and moment whereas the optimum designed lead-lag pendulum attenuates the root in-plane reactions. For optimum pendulum tuning the parameters to be determined are the pendulum uncoupled natural frequency, the pendulum spanwise location and its mass. It is found that the optimum pendulum frequency is in the vicinity of the excitation frequency. For the optimum pendulum a parametric study is conducted. The parameters varied include prepitch, pretwist, precone and pendulum hinge offset

    Induction probe determines levels of liquid metals

    Get PDF
    Mutual-inductance probe accurately measures liquid levels in a variety of liquid metals at elevated temperatures. It can be used in pyrochemical processes for the recovery of spent reactor fuel
    • …
    corecore